Wednesday, 12 July 2017

“Science is always wrong”


All the while I was doing it I would get quizzical, sometimes incredulous looks and comments from a sizable fraction of my academic colleagues. Why, they would ask, do I fight to stay closely involved when, in my position – whatever that was I never did fully understand, I could take my pick? ‘They needed my experience elsewhere’ where I would, apparently, ‘get a better shot at picking up research students’ … and so on and so forth. It wasn’t that dissimilar to the internationally well-known and highly respected senior colleague at a previous place of work informing me that I must be mad to leave a fast-track* career there for a junior academic post at an obscure provincial university. Their snippets of advice weren’t a million miles away from so many others I had heard before and have politely listened to since, all of which I am prepared to believe were well-meaning, and many of which may even have been right. However, sometimes no amount of dissuasion will ever be enough.

I helped to design our Foundation Year in Physics (which currently looks like this). It was a time of weak student recruitment and there’s no doubt that this motivated my head of department’s decision to task me and a couple of colleagues with the job. School-leavers with the ‘wrong’ qualifications to enter a Physics degree by conventional routes might change direction or make up for past under-performance by taking what was, in essence, a pre-degree programme of study. Result: more students going into Year 1 of our mainstream undergraduate course. Despite an initially reluctant involvement, I soon came to recognise that this had the potential to offer a ‘second chance’ to people who might need it. Goodness knows I’ve benefited from many of those in my time. Through more than two decades between its formation and my retirement, typically teaching over a quarter of the course to cohorts of up to 70 in number, I never found a group of students more worthy of my investment than were these ‘Year 0’ students. It is no surprise then that most of the innovations I experimented with were introduced in the hope of benefiting them – and thereafter the other groups I taught; I wrote about some of this in a couple of earlier post, here and here. What does this have to do with the title (which, by the way, is extracted from a longer quotation by George Bernard Shaw, see here)?
Read on …

One of the challenges was to persuade students who might regard themselves as ‘failures’ in one sense or another that they had something to contribute. An excellent route turned out to be the use of film/TV/computer game clips and other mass-media as a way into discussing their respective physics content, but another was for me to light a fuse by making an ostensibly outrageous comment – like the one in my title – and watching them defend their chosen subject. Eventually, we’d meander to the point at which most would recognise the kernel of truth in the proposition: history tells us that science is indeed always ‘wrong’. Let’s take one obvious example: the intellectual giant Isaac Newton gave us many elegant descriptions of the physical universe around us and no school textbook on physics is complete without the equations derived from his work. His research on light and colour, for instance, out-lasted the other descriptions available and still holds sway (see my post here to learn more). His description of the effects of gravity, although supreme for more than three centuries and still quite effective in most everyday circumstances, eventually gave way to Einstein’s work on the General Theory of Relativity. In other words, put crudely, Newton and the science associated with him was proved wrong in this regard. ‘Science’ was wrong and needed to be revised. The scientific knowledge we have today will be in need of revision tomorrow. It’s a humbling thought for us scientists – and we fail to take it on board at our peril. There is however a postscript to this line of reasoning. Whilst the results of scientific endeavour are always subject to change over time, it remains the case that that they give us the best insight into the workings of the physical world that we have at a given stage of history. We would have been fools to ignore Newton’s work, and thereby miss all the opportunities for advancement it afford us, on the off-chance that an Einstein was around the corner. We need also to keep in mind that science is more than its results: it’s a methodology, a way of asking questions and testing the limits to our understanding of the material world that is less susceptible to the vagaries of the human mind than some other means of inquiry.

My own early-stage career, as a graduate PhD student in the 1970s, put me in the position of demonstrating that one set of theories was inadequate and that an alternate was required. It was a scary thing to do at the time. Analogous thresholds have been crossed by the excellent former members of my research team from the mid-‘80s onward. However, there is only one true test of the commitment of an individual scientist to the principle of humility outlined above: what happens when one of their own pet theories or shiny experimental results are shown to be in need of revision … or replacement.

Now we reach the impetus behind my drafting of this post. A few days ago I received an email from a member of a German-Canadian research team describing in some detail why their recent data might require that a piece of work I was involved with over two decades ago probably needs to be re-interpreted. The email to me was a kindness – they could simply have written to the editor of the appropriate scientific journal and immediately lodged their comment in print; they wanted instead to see whether, on behalf of my co-authors of the time, I might like to say something first. I wrote back immediately. I shared with them the impracticality of pulling together the people and raw data of more than 20 years ago to undertake a re-analysis in light of this new information. I’m also pleased that I can say that I was able to commend and thank them for their work; I reassured them I saw this as science gaining benefit from their careful review.

Phew:
https://goo.gl/images/5N7Juf

* His words, not mine: I was never ‘fast-tracked’ through anything as far as I am aware, nor would I wish to be.



Friday, 26 May 2017

Paintings in Light



Welcome to the second instalment of my two-part post on the interaction of light with glass. The first part (in which I attempted to cover some foundations regarding what glass is, its transparency, the way light behaves as it passes through and how one can introduce colours) may be found here. As promised in that initial post, the intention is to move on to stained glass windows, and to highlight the interdisciplinary work of conservators who are committed to passing on these inherited treasures to future generations. Before diving into the subject itself I must acknowledge several people. First, my friend Martyn Barr who generously allowed me to recycle the title of his excellent book and use it as my own (see here, second and third paragraph, or here for further details). However, absolutely central to this piece is Léonie Seliger and her wonderful team at the Glass Studios of Canterbury Cathedral; I never tire of visiting them and of being able continually to learn new things from them. I am also very grateful to Jane Walker, the Cathedral’s Head of Communications, for her permission to use the images I captured on my 'phone during a recent visit.
Before I focus on the glass of Canterbury Cathedral I’ll share with you a few images from elsewhere, ecclesiastical and otherwise. On the left is a window I photographed in Folkestone (Kent, UK; All Souls church) after delivering a talk on glass there: the window was donated by the artist, Gabriel Loire, in the year of my birth; it is made from ‘chunks’ of coloured glass rather than cut sheets. Middle top shows a small part of the Roots of Knowledge windows by Tom Holdman, with the Big Bang depicted on the left and prehistoric humans to the right. Below that is shown a stained glass garden sculpture by Joe Szabo, spotted during a visit to the Royal Horticultural Society’s Wisley site. On the right are two examples of Louis Comfort Tiffany’s work; the top one I was fortunate to see during a visit to Chicago but not, sadly, the collection of lampshades shown below .

I doubt there are many people who are unaware of stained glass, even if they’ve seen only images; there are windows and other works of art based on the use of coloured and painted glass in buildings right around the world. In Europe, the techniques employed to create them date back more than a millennium, and novel examples continue to emerge. In order to maintain focus and to avoid turning this into an overly-long post, I will not attempt to describe how a window is made; that job has been done many times over (e.g. in Martyn Barr’s highly accessible book, see above, and in videos like this one, and this). The essential stages begin with the artist’s design, then cutting and shaping appropriately coloured glass to that design before painting on the fine detail – which may be fused into the glass surface using a furnace or occasionally ‘cold-painted’ onto the glass. The individual pieces are slotted into place using lengths of ‘H-shaped’ lead which are soldered together at each junction. For a large window comprising multiple sub-sections of the overall design each part is then tied to a supporting frame, usually of iron, using copper wire which has been soldered to the lead. There are variants on this formula, as in the windows created from relatively thick ‘chunks’ of coloured glass broken from a large block to create a more abstract effect, but I’ll confine my coverage of those to one of the images above.
These images will hopefully illustrate the way in which glass pieces are assembled and then sub-sections of a window are fixed to the frame. Copper wire is first attached to the leading, as in the mock-up shown top right, before being twisted around the frame to support the assembly in its final resting place. The ties shown in use on the right help to support Canterbury Cathedral’s Great South Window, recently re-installed after the surrounding masonry was replaced/renovated and the glass disassembled for conservation work. The image on the left shows the scaffolding I climbed through – with permission and a hard-hat, naturally – in order to get the in situ image.

When light passes through them, the windows ‘come to life’. However, the way in which they do so is affected by more than just the nature of the incident sunlight. For instance, in glass sheets made by traditional methods rather than by the commercially dominant float glass process – blowing a tube shape, cutting off the ends, slicing along its length and allowing the cylinder to fold outwards – there will be variations in thickness apart from anything else. Add to that the fact that older glasses, medieval for example, will probably include cullet (waste or recycled glass) of varying provenance, and differences in colour/shading from one part of the sheet to another will almost certainly be apparent. The fragment shown here illustrates this effect. There is a great deal of fascinating
archaeological science undertaken on such specimens, and the origins of particular glasses may now be revealed in some detail by studying the material at a microscopic level. (For those wanting to dig a little deeper, into the red-coloured glasses of antiquity for example, I suggest a close look at the accounts published by Ian Freestone, who is also very much involved in the project I initially outline here (second half), and which I’ll update below.)

One of the more profound effects of a stained glass window on the light passing through it, beyond selecting out a particular colour that is, is associated with the phenomenon of light scattering. Whether we realise it or not, we have all seen the effects of light scattering: blue daytime skies giving way to red sunsets, the whiteness of clouds and of milk etc.; all of this is due to the way in which particles (dust, water droplets, suspended fat droplets etc.) scatter beams of light. So it is too with stained glass windows. If through the effects of corrosion or by the artist’s will the surface regions of a piece of glass become porous, or perhaps picks up a ‘powdery’ layer through chemical attack or the accretion of particulates, something similar happens. Viewing such a window from the inside, that is to say with the window back-lit, gives the impression that the window ‘glows’ – the light coming through it is being scattered in all directions, irrespective of the colour of the glass. This is beautifully illustrated in the images below, associated with a major exhibition mounted by Canterbury Cathedral’s Glass Studio in the USA (see here and here). Some of the oldest surviving medieval stained glass windows that were being removed as part of the Cathedral’s rolling programme of building conservation work travelled to the USA for a season, and as a part of the exhibition the Glass Studio team made a modern replica of one of those windows …
Look first at the image on the left: which window comprises old, ‘rough-surfaced’ glass and which is the modern replica? Both are identically back-lit. Notice that the window on the left looks relatively ‘dull’ yet casts a bright pattern on the floor, whereas the window to the right of the picture appears much brighter but casts only a shadow on the floor. This illustrates the effect of light scattering. The modern window is on the left: the light that passes through it simply travels on until it reaches a surface, in this case the floor. The original window on the right of the picture takes the light that has passed through the coloured glass and, at or near the surface, scatters it widely – so we enjoy the coloured glow from whichever direction we view it, but very little of that light is left to carry on through to the floor. The photo on the right shows the head of the Glass Studio, Léonie, and a senior member of the team, Laura, standing in the transmitted light of a large modern window: just think of the patterns of brightly coloured light that would have bathed Canterbury Cathedral when its medieval windows were young.
Now we move into the realms of conservation. One might naïvely suggest any surface layers ought to be cleaned off in order to return the glass to its original state, but nothing is that straightforward. Remember that some surfaces may have had detail added via the application of a paint, which may have been fused into the surface or simply be applied ‘cold’. Moreover, many of the older glass pieces may be fragile and there is a risk of irreparable damage – especially if the surface layer turns out to be deeper than anticipated. Then comes the need to know what the surface layer is made of since whatever is used to remove it must not also damage the native glass below; this itself can be a complex issue to resolve. However, the question becomes far more complex when the glass artists themselves apply a surface coating since current thinking is that an intentionally applied layer must be left in situ – irrespective of whether we might feel it was ill-advised, or whether it has changed over time. After all, many world-famous paintings change over time because their pigments or other media were not stable – this can be a serious problem with some of the J.M.W. Turner’s work for example because he was keen to experiment with novel paints – and we would be outraged if they were ‘tampered with’. In terms of stained glass windows this particular issue is widespread. For instance, it was not uncommon for Victorian (i.e. 19th century) stained glass artists to try to make their windows look older than they were: perhaps by sprinkling iron fillings onto the surface and then fusing them into the glass in a furnace. Ironically, this has in some cases left us with medieval windows that appear to be younger than Victorian ones. Adding a colour-wash to the surface was also practiced, perhaps to reduce the brightness of a particular section in order to keep it more in line with the window as a whole or artificially to generate the light scattering effect discussed above.

It is exactly this sort of issue currently facing the Glass Studio at Canterbury Cathedral: Victorian windows that are being removed as part of their wider conservation/renovation programme and which, to use the technical term, have a series of ‘blobs’ or patches in particular locations on the glass. The problem was outlined in a post I uploaded last year: here, second half. However, the good news with which I will end this update is that a strong international team of experts is now pooling its efforts in order to resolve the problem. Thus, added to the considerable experience and expertise of the staff of the Glass Studio is an archaeologist from University College London, Ian Freestone, who specialises in applying scientific methods to the study of old glass, and a conservation scientist from Lisbon, Márcia Vilarigues with a wealth of relevant knowledge. I met Ian a few years ago, and have been reading his papers for much longer, and had the pleasure of meeting Márcia for the first time at the conference on glass I wrote about in the post mentioned just above. We finally managed to get us all together a few weeks ago and spent the best part of a day touring the site and poring over examples of the problem at hand. Minute samples of the troubling ‘blobs’ have now gone back to Lisbon for analysis and I have high hopes that we’ll soon know what it is we’re dealing with – and that this will give Léonie and her team the additional scientific insights they need in order to undertake genuinely appropriate conservation work on the windows. The day itself provided a wonderful opportunity to learn from each other in a spirit of partnership – although I rather suspect that I had the most to learn, by far – and I doubt I could convey its excitement adequately in the words of a blog post. In lieu of the better prose required I’ll end by sharing some of the images I captured from the day …
Phase 1: the journey up using the construction workers’ cage lift gave us some extraordinary views of the Bell Harry tower, some heavy-duty masonry, amusing gargoyles and down towards the Cathedral Gate and the city beyond.
Phase 2: the working platform sits atop a huge scaffolding assembly which straddles the nave a long way below; some sense of the height is possible using the left hand image, taken through a hole in the safety netting at the end of the platform and towards the quire and the altar. Even with the nave far below us, the space up there was still enormous. However, the key thing was being able to see some of the affected windows which are still in their original masonry settings.
Phase 3: poring over one of the windows now in the Glass Studio in order to get a better view of the ‘blobs’, which are all-too-evident in the left hand images (these show the same area of the window but viewed from either side – i.e. external and internal surfaces). Tiny amounts of surface material were then carefully removed for detailed scientific analysis.
Phase 4 & etc.: the results, conclusions and conservation decisions are yet to emerge; as in all areas of research, perhaps especially in the area of Heritage Science, patience is a virtue: watch this space …


Further reading
Although I spent a large fraction of my career as a scientist studying glass – there are innumerable entries on the subject within posts on my blog, e.g. here – I have come relatively late to stained glass and its conservation. However, for what it’s worth, these are the books that now sit on my shelves:

Paintings in Light by Martyn Barr, ISBN 978-0-9563429-4-2
Stained Glass of Canterbury Cathedral by M.A. Michael, ISBN 1-85759-365-0
Stained Glass in Canterbury Cathedral by S. Brown, ISBN 0-906211-31-X
Notes on the Painted Glass of Canterbury Cathedral by F.W. Farrar, a digitised version of the1897 original from bibliolife.com (I bought it online from a retailer specialising in out-of-print titles, here.)
Conservation of Glass by R. Newton and S. Davison, ISBN 0-7506-2448-5
The Conservation of Glass and Ceramics ed. by N.H. Tennent, ISBN 1-873936-18-4

Naturally, there is much also available online – both as text and as videos; you might like to take a look at the material uploaded from Canterbury Cathedral for example (e.g. here)

On the history of glass more generally, I find I have the following:
A Short history of Glass by C. Zerwick, ISBN 0-87290-121-1
Glass: a short history by D. Whitehouse, ISBN 978-0-7141-5086-4
5000 Years of Glass ed. H. Tait, ISBN 978-0-7141-5095-6
The Glass Bathyscaphe by A. Macfarlane and G. Martin, ISBN 1-86197-394-2



Monday, 8 May 2017

Colour my Glass


This is the first of a two-part post on glass, and in particular on the way in which light interacts with it. In this first instalment I’ll attempt to cover some glass basics: what glass is, its transparency, the way light behaves as it passes through and how one can introduce colours. Hopefully, this prepares the way for a closer look at stained glass in the second chapter and at a specific, Victorian, example of the sort of issues faced by conservators of Canterbury Cathedral’s stained glass windows.

Rather than spend a lot of time reiterating what I, and others, have written or spoken on in the past regarding what glass is, I’ll offer a brief description and then a couple of links to previous posts and videos. You can choose how wide-ranging you want to go, or how deep you’d like to dig – and by the same token, how long you want to spend on the topic. Perhaps the easiest place to start is via the assumption that most of us are familiar with what a crystal looks like. Even if you don’t have large diamonds or sapphires kicking around the place, you’ll have perhaps seen a crystal of quartz, or even grown salt or other crystals whilst at school. The one thing they have in common is the regularity of their respective shapes: all salt crystals are cubic, natural (i.e. uncut or polished) diamonds are, well, diamond-shaped and so on. The shape they display to us arises directly from the equally regular arrangement of their constituent atoms. Thus, the atoms in a quartz crystal – atoms of silicon and twice as many of oxygen – are also arranged regularly as though on an ever-repeating lattice. In this case however the atoms are arranged in a pyramid-like fashion (shown in the four-part figure below), which gives quartz crystals their characteristic shape. This provides for us a bridge into understanding glass, since the prototypical glass, silica, on which all our windows, bottles etc. are based, has an identical chemical composition to quartz: two oxygen atoms for each silicon atom. Just as in quartz, the atoms are in a pyramidal arrangement with their nearest neighbours – but the key difference is that silica typically solidifies too fast for the atoms to arrange themselves perfectly in 3D: the angles (and distances) vary just a little from one group of atoms to another. This addition of a small degree of disorder is enough to rob the material of any semblance of the regular facets observed with a crystal.
From left to right: a crystal of quartz, showing the regular facets associated with all quartz crystals which arise from the regular arrangement of atoms shown in the second figure (after Prof. A.C Wright). If the key angles vary by a small amount – less than 10 degrees – from one group of atoms to the next then one has the sort of disordered atomic arrangement depicted in the computer-generated model shown in the penultimate figure (after Prof. A. Cormack); it is this disordered structure that is associated with glass, as in the virtual MineCraft® building I wrote about here and which is depicted on the right.

Should you wish to read beyond this basic description I have written about glass, in its several guises, in several former posts, but this one is perhaps the most relevant; move on to this post if you would like learn something of the ‘human factor’ within scientific research into such materials. On the other hand, if you’d prefer to sit back and watch a video presentation on the subject, then look no further than the recording of a public lecture I delivered a few years ago in one of my local museums. The video is approximately 58 minutes long, although the introductory material is confined to the first eight minutes or so.

Having established the basics, and keeping in sight the target of understanding the way in which light is altered as it passes through glass – and coloured glass in particular – one ought first to tackle the matter of glass ‘transparency’. We tend to think of the windows in domestic and commercial buildings, windscreens, display screens etc. when we think about glass in the everyday. We can see through glass: it’s ‘transparent’ (see here for an excellent insight into why this might be). Indeed, the secret of the success of world-wide fibre optic communications resides in the exceptional transparency of the silica glass at its core, first demonstrated in the early 1970s by Donald Keck and co-workers. However, ‘ordinary’ glass isn’t perfectly transparent and might not be very transparent at all under certain circumstances. It all boils down to what sort of glass it is (its chemical composition, whether it includes bubbles, impurities & etc.) and what sort of ‘light’ we’re talking about. I have tried to illustrate this in the images below. The two images on the left show three types of glass: a common (soda-lime) glass typically used in windows, bottles etc. which sits inside a tube of Pyrex glass (a borosilicate) and which, in its turn, sits within the outer tube of pure silica. Viewed side on (left) the composite glass rod seems reasonably transparent, but when viewed end-on (middle image) so that we’re trying to look through a far greater thickness of glass it is obvious that the transparency varies a lot between glasses. Turning now to the diagram on the right, this illustrates the degree to which transparency, or the ability of the glass to transmit light, varies depending on what sort of light is involved. This simplistic diagram provides a representation of the situation with a car windscreen for example: of course we need a high level of light transmission for the visible part of the spectrum – the rainbow colours – but we don’t want a lot of infra-red or ultra-violet getting through as it’s preferable neither to overheat nor to get sunburnt; however, it is important that microwaves are able to pass through as our passengers may wish to use their mobile phones. The situation is very similar for window glass, and a great deal of research and development has gone into the formulation of glasses tailored to achieve these ends.
Please see the text above for an explanation of these figures.
Having now introduced some of the caveats and subtleties behind apparently simple comments such as “glass is transparent” we ought also to mention the important ways in which even transparent glass affects light as it passes through. Key phenomena are refraction and dispersion, which allow us to fabricate lenses and use prisms as well as to explain why a swimming pool looks to be less deep than it really is and where a rainbow comes from. Refraction is the phenomenon by which light is ‘bent’ as it passes from one transparent medium to another, and dispersion tells us that the magnitude of such processes depends on the wavelength – the colour – of the light. I’ll not weigh this post down with a lot of detail since it would be a bit of a diversion from the principal thread. However, if you’d like to know more then please take a look at two of my earlier posts: one on the origin of rainbows (here) and another which illustrates theories of colour through the use of a prism (here).

The final stage of this first post in the pair brings us to the subject of coloured glass. The reason that window glass is reasonably transparent is explained very well at the atomic level in the video I recommended earlier (here): in essence, there are few mechanisms within the glass able to reduce the amount of light passing through. We can change and control that situation, and do so by design. What is needed is the introduction of small concentrations of one or more metals, each of which will offer at least one route by which light of a particular colour will be absorbed. Thus, adding a metal which absorbs light at the red end of the visible spectrum (i.e. from the ‘rainbow colours’) ensures that the light transmitted through the glass has no red within it. We have, in effect, coloured the glass. For example, to give a blue-coloured glass one could use cobalt, copper or ferrous iron; nickel, chromium or ferric iron would yield a yellow-looking glass. Moreover, one can play with the addition of more than one type of metal. For example, a glass containing both ferric and ferrous forms of iron would appear green since that mid-section of the visible light spectrum would be the only part not absorbed by one or the other forms of iron. In passing, I had the privilege of taking part in a project run by the Turner Contemporary Gallery a few years ago in which the topic of colour was explored by a local group of young people. This included a visit to the Glass Studio at Canterbury Cathedral to examine the artistic use of such coloured glasses; the video record of the project is here and my short voice-over on the scientific background to the colours of glass starts at about two minutes in.
One can map the development of the chemistry of metals by looking at the coloured glass used by artists of the time. Within a very few years of their discovery, often less than a decade, a new metal would find itself being used within the glass industry. Some metals imbued not only a particular colour, but more exotic effects. Neodymium, for instance, will colour a glass blue in daylight – but this becomes more red in colour if the glass is illuminated with UV light (a ‘dark light’). Even more dramatic is the effect of UV on the green glass created by adding uranium – yes, uranium was used also – since it fluoresces and emits a very bright yellow-green light.

In the next post we’ll focus on one aspect of the artistic and architectural use of coloured/stained glass, and on the conservation issues associated with old stained glass windows. In the meantime, I’ll leave you with this image of one of the many delightful pieces to come out of Peter Layton’s studios; this piece is from his Mirage series.




Monday, 17 April 2017

Peers, papers and ponds


One of the nice things associated with being ‘retired’ is that one can take advantage of a great deal more flexibility within one’s week. However, that only really works in the presence of a variety of opportunities. Thankfully, I continue to benefit from the positive effects of the sort of serendipity I have mentioned often in earlier posts when reflecting on aspects of my life as a scientist. In the last couple of weeks, for example, the more usual spread of activities has been augmented by the need to review the results of some still-novel research from my former research team, an invitation to present certificates-of-achievement to more the 70 amazing students and the chance to engage with a fascinating conservation project.

I have written before about teaching undergraduate physics students and some of the fun I’ve had exploring innovative ways to improve my effectiveness and their learning (see here and here). What I didn’t write about at the time were the ways in which one could successfully support and amplify all this using suitable, trained volunteers from the students themselves. I had the opportunity of helping to test-run and then to develop an academic peer mentoring scheme at my university which was introduced and championed by a particularly committed leader in student support, Allia Wilson, and her team. In essence, certainly as I implemented it within my department, the scheme provides a framework for small groups of those in the first stages of their degree programme to learn directly from capable students in the latter half of their programme. It’s a tremendous scheme, not only for those early-stage students who take advantage of it but also for the volunteer mentors themselves who benefit by digging deeper into their own studies and by learning more about themselves as people, teachers and leaders. Given the tenor of this introduction it will not surprise you to hear that I was, and remain, a huge fan of the scheme. Being invited to present awards to about 70 of this year’s approximately 300 trained volunteers was therefore an opportunity not to be missed. It was of course good to catch up with former colleagues and to be able to say a few words to those gathered, but the highlight was hearing from the mentors themselves – informally during the preceding buffet lunch or after the formalities were over, and in the handful of case-study presentations some of them were able to make. It’s good to see that the project is in safe hands and continues to make a positive contribution.
The obligatory group shot at the end of the ceremonies;
I’m in there somewhere, but I’ll leave the location as a minor mystery for you to resolve.

Although I am no longer actively initiating research projects, there are a few things that couldn’t be brought to completion before ‘retirement’. Slowly, this work is emerging into the light. This week, a former PhD student, now a lecturer in Chemistry at a UK university, sent me her draft manuscript for a paper on silver-doped bioactive glass. Together with our collaborators/partners, we had synthesised a series of sol-gel silicate glasses (see the second half of this post for some generic background and links to further information, or here - again, second half) with various levels of silver added, collected the data but not had sufficient time to analyse or interpret it. Why this particular set of materials? The host bioactive silicate glass bonds to bone and promotes bone regeneration, and the silver imbues it with antibacterial properties. This data was only a few years old, in contrast with the second set of results which came my way – this time from a former research associate in my team, now a senior academic in both the UK and in Canada. She and I collected the data, on a rare-earth doped phosphate glass of great interest within the field of optoelectronics, more than a decade ago during an extended and very demanding experiment in the USA. The ‘delay’ in getting to this final stage arose from the extraordinary complexity of the data and the need to develop analysis routines almost from scratch. In both cases, I’m now looking forward to completing these outstanding projects. I wonder what else is yet to emerge from my former working life …
Schematic representations of the atomic-scale structural features within a rare earth phosphate glass are shown here. On the left is depicted the nearest neighbour environment of oxygen (O) and phosphorus (P) atoms around a rare earth (R); on the right, a slightly larger-scale representation of the interrelationship between the rare earth (yellow) and neighbouring phosphate groups (pink). 

Having now covered ‘peers’ and ‘papers’ we are left only with the ‘ponds’ mentioned in the title. I have been pondering writing a post on vaguely science-related aspects of gardening for some time. However, I’m not a gardener in the classic sense of knowing a lot about flowers and shrubs and so on – I only really enjoy growing edible plants, and we don’t have a garden nearly large enough to allow much of that. I value what I might call the therapy of practical work in the garden, and thankfully my wife – who does know about flowers and shrubs – takes care of the ‘proper’ gardening: our complementary skills make for a good team. What does interest me is being able to make the place a little more attractive to birds, insects and other small creatures. In their turn they give me the chance to sit and stare, and to read and reflect in their midst. So, rather than write a post on the biology and chemistry of making good quality compost or the importance of pH and oxygen levels in a garden pond etc. I’ll share with you a naïve and extremely amateur five-minute video tour of the place.
The video was shot in a single take using my ’phone, so you’ll not be too surprised by the quality either of the picture or of the audio/commentary: I make no claims for it whatsoever, it is ‘a bit of fun’, partially inspired by snippets from BBC's Gardeners World and elsewhere. (Yes, I do realise that at one point I use the word ‘pond’ when I mean ‘garden’. I also omitted all sorts of things I might have mentioned; never mind.)

Postscript: As a very significant bonus to what I’ve written about above, I spent over five hours at Canterbury Cathedral a few days ago in the company of some exceptionally talented scientists, conservators and creative artists. We were focused on conservation issues associated with their stained glass. I have been thinking about writing something on the interaction of light with glass – my favourite material – and this additional opportunity to learn more about the subject of stained glass turns the idea into a high priority. However, rather than expand this short post into an exceptionally long one I’ll devote a separate piece to the topic. Watch this space …


Tuesday, 21 February 2017

Shadows of Science: finding a new voice



In a short article posted early in June last year (2016) I was, yet again, musing on the topic of ‘scientists as real-life people’. The post was catalysed by my discovery, in a book on words which have no clear-cut equivalent in English, of a Japanese word which encapsulates the act of gazing into space without thinking about anything in particular. The post was titled Boketto. As an experiment, for my own benefit more than anyone else’s, I appended to the core reflection a short story I had written as a piece of ‘homework’ for the creative writing group I was a member of. However, I later got cold feet and deleted it. This may have been premature. Having now written several short stories for one writing group or another (and even a competition-winning shape/concrete poem, see here) I have spotted a distinct theme which prompts me to reconsider. I have no desire at present to move my blog away from its core raison d’être – namely to offer posts on being a scientist and on public engagement – but it is evident to me that even my creative writing exercises derive their essence from my life as a scientist. The fact that they are all informed by my experiences as a scientist and an academic ought not to be a surprise of course, given that all authors – even the very amateur ones like me – write out of themselves in some way.

What I intent to do, therefore, is to post a handful of them and allow those interested in reading them to do so and to come to their own verdict. They are all reasonably short, varying from about 1200 to 2000 words, and have had the significant benefit of constructive criticism from fellow amateurs more talented than me; one of the stories even made it to the final ten in a local competition and is due to appear in a small anthology. In this introductory post I will try to draw out some of the more direct links with the events, themes, places or follies of my career. It might also be of interest to fellow creative writers out there if I try to give you a ‘feel’ for the background to each of the exercises: what were the tasks set by our group leaders that gave rise to the stories you read. I have posted them separately, in the order in which they were written, and have included links to each of the stories below; in that way this post will act as a contents page as well as an introduction. I hope you will explore, and perhaps even enjoy, one or more of my stories – but I must of necessity leave that with you.

1) The Baptism of Jon arose from a task which began with the following tasks: pick a character’s name and give this person a tattoo, choose a second character who will either help or hinder the first; there must be a setback, but then a resolution. (Those of you who write will recognise this as a variant of the classic story arc.) There’s no immediate link with the physical sciences but, almost unconsciously at first, I ended up setting the story in a conference room. I’ve been sitting in such rooms, off and on, for four decades …

2) Triple Scoop takes us back to the early 1980s when I was making repeated extended trips to a national laboratory in the USA. I included something of this period of my career in an earlier post (here). The dramatic event at the centre of the story actually happened, and my homage to American ice cream parlours of the time definitely comes from the heart, but the characters are made up: some autobiographical traits and many others borrowed from a mishmash of acquaintances and observation.

3) Carriage C was originally drafted at the rate of ~500 words per installment through a five-session creative writing course with the local University of the Third Age, U3A, but then re-edited to iron out the consequential disjointedness and weakened overall direction. The initial exercise called for a description of a place/space in the absence of people – I wrote it on the train from London to Sheffield, where I was participating in the centenary meeting of the UK’s Society of Glass technology (see here, second half, for my reflections on the conference). Thus, I owe the entire trajectory of the story to this conference journey. Moreover, one of the fellow scientists travelling with me provided the initial constructive feedback.

4) The choice of title for the next story, New Blood, reminds me, although only in hindsight, of the government scheme to help address the age profile of UK universities in the mid-1980s. It was on the strength of this injection of funds that I was able to begin my three-decade academic career. This was a challenging exercise, heavily constrained by the requirement to use the first sentence (in italics) as the opening lines for the story. However, the vision of a group of people jointly writing a ‘make-or-break’ document came directly from experience. Almost all my published scientific output – follow the link at the bottom of the right hand column to 'orcid' for more details – has been collaborative by choice; most of this was managed using fax machines and later via the internet, but not all. There was one truly major item deemed to be so important that we shut ourselves in a room and worked on it in precisely the manner depicted in this story. With genuine affection I wrote about this team of people here.

5) Mr and Mrs Micawber arose from another challenging exercise, in this case to write a short story inspired by an image our creative writing group’s leader had provided. I have included in the post the image allocated to me, together with a crude diagram I thought might prove useful. Apart from a nod towards a pair of characters in Charles Dickens’ David Copperfield, the setting of the story is heavily inspired by lectures I used to deliver to new physics students during the latter, more confident and relaxed, phase of my academic career. In order to engage those students who lacked confidence in the ‘strange’ learning environment they found themselves in I would show clips from movies as the starting point for science-focused discussion or problem-solving. I made passing reference to this approach in an earlier post, here. An oft-used clip was that of the approach and docking sequence at the rotating space station depicted in Stanley Kubrick’s ‘2001: a space odyssey’ – a film my daughter once described as “three hours in which nothing happens”, but which to my mind has remained one of the classics of the genre. Thus, Emma and Wilkins Micawber, live on an analogous station sited at the first Earth-Moon Lagrange point ...

I sincerely hope and trust that I will continue to be able to write short fictional stories in the stimulating company of diverse, but universally creative, fellow writers. I do so for my own pleasure, but it will be interesting to see how my life as a scientist continues to inform and populate even these ostensibly ‘non-scientific’ creative writing exercises.


P.s. since posting this, and the five short stories that went with it, I'm glad to say that I've continued to write even fiction as through the lens of my lifelong love of science. My tally of shape/concrete poems has now reached two with a poem titled Cusp, after the mathematical term and which proudly displays the word 'singularity' right at its centre (the first poem, Harmonics, is mentioned here). There is added to this my first free-form poem, which was inspired by what I stumbled across during a mid-experiment walk out of the Rutherford Appleton Laboratory a couple of decades ago. There's a new short story as well, set in the park below Glasgow University within site of the statue of physical scientist Lord Kelvin.